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We propose a mathematical model of the interaction of vorticity and tempera- 
ture pulsations for turbulent flow in the mixing layer of wakes. We obtain 
the spectral characteristics of temperature and vorticity pulsations in the 
presence of heat release. 

Instabilities have been observed in the working regimes of systems with intense energy 
release, which include combustion chambers of modern thermoenergetic devices, chemical reac- 
tors, and a number of plasma technology devices. These instabilities are directly connected 
with the physical processes which occur in the systems [i]. In this case the instabilities 
manifest themselves in the arisal and amplification of certain types of disturbances [2]. 

According to [3], any deviation of the thermodynamic parameters from their average values 
can be represented in the form of a superposition of acoustic, vortical and thermal perturba- 
tions. Acoustic-vortical and thermoacoustic interactions have been studied in detail, and 
the results have been generalized in monograph [i]. Thermo-vortical interactions have been 
studied to a lesser degree, although a series of experimental data indisputably establishes 
their existence during combustion [4]. 

The goal of this work is to establish a model of thermo-vortical interactions in the 
presence of volume heat release. 

i. Mathematical Model 

We examine plane, isobaric flow of a viscous heat-conducting gas in the mixing layer of 
two wakes and in the presence of volume heat sources. The average velocity of the flow is 
along the x-axis (see Fig. i). 

We write the basic system of conservation equations in the usual form [5], taking into 
account the presence of nonlinear volume heat source Q(T, u)" 
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For isobaric flow the equation of state takes the form 

pT = const. ( 4 )  

Applying the operator rot to (2), we obtain the vorticity equation [6]. We write this 
for small perturbations, using the previously estimated residence time ~res = Lx/u0 and 
rise (induction) time T i = Ly/u 0 for the perturbation in the mixing layer. Here L x and L 
are the dimensions of the mixing layer along the x- and y-axes, u0 = (Ux0--u 0, 0, 0) is t~e 
averaged flow velocity (see Fig. i). In the future we assume that Ly is the dimension of the 
largest vortex, and that vorticity generation occurs as a result of ~low velocity differences 
in the mixing layer Au 0 = U0max - U0min, &u 0 ~ u 0 for the discharge stream in the flooded 
space. In addition, for Re = u0h/~ >> 1 (h is the width of the nozzle outlet, h >> Ly [7]) 
Ly/L x << 1 and correspondingly, ~i/Tres << i. 

As a result we obtain in place of (2) after straightforward transformations the equation 
for small perturbations in the vorticity ~' in the case p = const: 

an; �9 aQ~o 0 %  (5) 
a ~ -  ~ - a 7  + ~ aye ,  

where 

~;_ au'~ au; -q~o- auto auo 
Ox 09 ' Ox Otj 

Velocity pulsations along the x-axis can be induced by either shear stresses in the 
mixing layer, or by density or temperature pulsations. In this connection, it is useful 
to represent the velocity as the sum of two components 

4= (6) 

where Uy v' is the vortical component of the pulsation Uy', which is caused by pulsations in 
the shear stresses; and Uyp' is the potential component,-due to density and temperature pulsa- 
tions. 

We know that for free vortex flow [7] 

U~v = L~;, L -- Au0 ~ o  _ di.0 (7 )  
(Ouol dg)ma~ d9 d9 2 

where L-------Ly is the characteristic width of the mixing layer. Substituting (7) into (5) and 
using (6) we obtain 

a~; _ A.o di.0 ~; d~.0 0 %  (8)  
Ot -- (duo/dY)max d9 2 + ~  @p + v Og z 

Equat ion (8) pe rmi t s  d e s c r i p t i o n  of  v o r t i c i t y  g e n e r a t i o n  in the  mixing l a y e r  wi th  account  
t aken  of  t he  t r a n s v e r s e  v e l o c i t y  g r a d i e n t ,  the  i n f l u e n c e  of  d e n s i t y  and t empera tu re  pu l s a -  
t i o n s  on the  p roce s s ,  and a l s o  of  v o r t i c i t y  decay as a consequence of  v i s cous  l o s s e s .  

We now ob t a in  t he  equa t i on  of  energy (3) f o r  smal l  p e r t u r b a t i o n s ,  which i s  de r ived  from 
(6) and (7) in  ana logy  to  (8) .  We have in the  end 

OT' ! 1  (0(72'1 OTo ] Auo Q ; +  l ,' OQ) T, OTo , 0iT ' 
0t o0c--/  0 .0/T oy (d.0/dy) o  - o0c--7, 0y § (9)  

where we have taken into account 

Q,= t OQ ~ r' OQ t "~ 

Such a r e l a t i o n  r e f l e c t s  the  dependence of  t he  h e a t - r e l e a s e  p e r t u r b a t i o n  on tempera-  
ture, through the kinetics of chemical reactions, and also on the velocity pulsation. This 
holds, for example, close to the region of flame separation when the fuel mixture is strongly 
enriched or made lean by combustion and flashback occurs, due to insufficient stabiliza- 
tion [8]. 
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It is evident from Eqs. (8) and (9) that vorticity perturbations influence the tempera- 
ture pulsations through heat release rate perturbation. The inverse effect may exist if 
the width of the burner outlet is of the same order of magnitude as the dimension of the 
mixing layer; h ~ Ly. We consider this case as beyond the limits of this work. 

We write Eqs. (8) and (9) in final form, which describes thermo-vortical interactions 
in the presence of heat release: 

0n;  _ o %  
at + v 'ogz , ( lO ) 

O2T' OT' = I r a Q ' ~ + I r T ' + a - -  (11)  
Ot Og z 

Here I n -- tuo(d=uo/dy2) / (duo /dY)max  i s  t he  increment  of  the  v o r t i e i t y  p e r t u r b a t i o n ,  a q u a n t i -  
t y  inversely proportional to the characteristic induction time of the perturbed vorticity 

-I (In ~ ~in )" The value I~ characterizes the vorticity perturbation source in the mixing 
layer as a consequence of the appearance of shear stresses at the outflux of the reacting 
mixture. The parameter ITn = [(3Q/3U0)T/(p0c p) - 8T0/3Y]AU0/(3u0/SY)ma x characterizes the 
perturbation energy pumping in the temperature perturbation, caused by the vorticity per- 
turbations. This mechanism is due to the sensitivity of the heat release rate to velocity 
pulsations and the nonisothermal nature of the flow in the transverse direction. As follows 
from an analysis of these quantities, the condition for the influence of the vorticity per- 
turbation on heat release is the presence of shear stresses. 

The quantity I T = (3Q/ST)u0/(p0c p) is the increment in the temperature perturbation. 

It is inversely proportional to the characteristic induction time of the temperature per- 
turbation (I T ~ xit-1). The terms (d2u0/dy2)Uyp ' and (dT0/dy)uy p' in Eqs. (8) and (9) were 

discarded in obtaining (i0) and (ii), since the value of Uyp' is, as is easily shown, propor- 
tional to the value of the averaged transverse velocity, whzch is negligibly small in the 
framework of the present problem. The effect of Uyp' is a subject for special study. 

2. Spectral Characteristics of the Vorticity Fluctuations 

We examine the spectrum of the vorticity perturbation in the mixing layer. Towards 
this end, we introduce into (i0) the random pulsation source: 

02Q~ 
an; _ IaQ;_F , ;  -+-%(9, t), (12) 
at --Sift- 

<~(g, t)> =o,  <g(g, t)g(y', t') > =o~,a(g'--y)a(t'--t). (13) 

Here ~(y, t) is the delta-correlated random vorticity pulsation source; o n is the vorticity 
perturbation intensity; the angular brackets denote averaging. 

On the basis of (12) and (13) we can obtain the autocorrelation function for the vorticity 
perturbations : 

Ra(At) ~a exp[--(~k~--Ia)At],  A t :  t ' - - t .  (14) 
wk2--1a 

It is easy to see that the presence of shear stresses in the mixing layer leads to an in- 
crease in the correlation time ~c = (vk2 - I~ )-I and to the corresponding growth in the in- 
tensity of the vorticity perturbations. Perturbations with scales less than f* = 2~/ki* 
prove to be unstable, where 

k~ = (Ia/~) 1/2. (15) 

In t h i s  way i t  i s  p o s s i b l e  t h a t  " l o n g - l i v e d "  s t r u c t u r e s w i t h  s c a l e s / - 2  l'* can a r i s e  and 
be a m p l i f i e d  a g a i n s t  a 5ackground of  s m a l l - s c a l e  t u r b u l e n c e  ( l<  ! * )  [9] .  

We determine the spectral power density (SPD)S a for the vorticity perturbation. To 
do this, following [10], we average the perturbations over the width of the mixing layer. 
The expression for Sn(m) takes the form (~ is the circular frequency) 
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sin~kL ID(k, (0)12S~(k, (0)dk. (16) Sa ((0) = (2a)-1 j (kL)----- ~ -  

Here [D(k, m)[ = [(vk 2 - la) 2 + ~2]-~ is the modulus of the system transfer function; and 

S$(k, m) = o~ is the SPD of the random source. Direct integration of (16) gives 

s~((0)- % {1+ 
4Lq ~ 4s_  , 

X [ c~ ( l s _  2IaQ 

q =  V l ~  + o a, s+_ = 

We obtain the asymptotes to S~(~) for 

i) I~ > 0; here 

So ((0) G~ 
4L 2 

In this case, in palce of 

Sa((0)= % [1--  
4L(0Z L So 

2) I a = O. 

41~2 ) 1 ' 1 + exp(--s_) x 

_ _ )  sins+s+ (l-i- 21~2q )]},  

/ 2---~-(q+_-la), Vo = v / L  2. 
u 

two cases of interest: 

( I:)] = -  cos 2L ~ 4 2 (0-i, co--+ O; 

S~ ((0) % (0 -2 , ( 0 - + 0 o ;  

4L 

(17) we have 

i ] @ -~- exp (-- So) (cos Cr -- sin so) , 

(17) 

(18) 

(19) 

Then the asymptotes take the form 

so = L(2(0/v)  I/2. 

%L 
s~((0) - 8 ] / ~  (0-3/2, (0~0,  (20) 

Sn((0)= (~a (o-2, c0-+oo. (21) 
4L 

By analyzing these asymptotes, we can draw the following conclusions: 

i. A characteristic feature of this system for I~ > 0 is the asymptotic form SQ(m) ~ 
m -1 for m § 0 (or as will be shown below, in the more general case S~ N mn, where n _> -i). 
Such a dependency in all likelihood is a characteristic peculiar to a nonequilibrium system 
[10].  

2. The great sensitivity of the SPD to the width of the mixing layer (S~ ~ L -2) for 
I~ > 0 as w + 0 is notable. This is indicative of the determining influence of the initial 
section of the mixing layer on the generation of large-scale vortical structures, where the 
maximum transverse gradient in parameters is observed. 

Figure 2 shows the characteristic form of the SPD of vorticity perturbations for vari- 

ous values T~ = l~/o~ (Fig. 2a) and also the dependence of the power exponent n in the rela- 
tion S~(m) N mn under similar conditions (Fig. 2b). It is apparent that: 

n = --I for m = I~, n > -i for m < I~, n < -i for ~ > I~. 

For the purpose of interpreting our results, we examine (16). The product kL in the inte- 
grand characterizes the phase correlation of the dimensions of the perturbation and the width 
of the mixing layer. Here k = 2Z/Xp, where Xp is the perturbation wavelength. As can be 
seen from (16), the integrand vanishes for kL = 2~m (m = 0, 1, 2, 3 .... ). We examine the 
characteristic values of the phases of the perturbations. 

I) kLy << i. This condition is equivalent to m + 0 (%p + ~). In this case, the pertur- 
T! I! bations are in a combustion zone that is infinitely long and their amplitude grows as a 

result of energy release. The perturbation energy is proportional to the characteristic 
residence time in the generation zone, which is in keeping with the dependency S~ ~ m-1. 
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Fig. 2. Dependence of (a) SPD the vorticity perturbation 
and (b) the exponent index n on frequency (v = 10 -4 m2/sec, 

Ly = 10 -2 m). i) ~ = 103 m/sec4; 2) 5-103; 3) 8-103; 4) 104 . 
S~ is in units of sec-2/Hz; m in sec -I. 

a ,4 L~p_~ b ~ 
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Fig. 3. Diagram illustrating the phase relationship between 
the dimensions of the perturbations and the width of the gen- 
eration zone. a) boundary of the stability region, kL = 2~, 
Ti = ~res, n = -i; b) stability region, kL > 2~, T i > ~res, 
n < -i; c) instability region, kL < 2~, T i < Tres, n > -i. 

Physically this signifies the onset of flicker noise [ii], when in the mixing layer (or in 
the boundary layer) large-scale formations arise, which serve as the basis for coherent 
structure [i0, 12]. 

2) kLy = 2z. Under this condition, an entire perturbation period is reduced to the 
width of the mixing layer Ly (Fig. 3a). In other words, the characteristic dimension of the 
pulsation lp = 2~/k coincides with the dimension Ly. This case corresponds to equality of 
the characteristic induction time of the perturbations and their residence time. 

3) kLy < 2~. Here the dimension of the perturbation exceeds Ly (Fig. 3c), and amplifi- 
cation of the perturbation takes place according to the "scenario" described in para i, 
and n e I. 

Thus the power index n can serve as a criterion which characterizes the amplification 
or decay of vorticity or temperature perturbations [i0]. 

3. Spectral Characteristics of Temperature Pulsations in the 
Presence of Vorticity Perturbations 

Switching over to an analysis of the spectral characteristics of temperature puslations 
in the heat-release zone, we note that the conclusions inferred above for vorticity pertur- 
bations are valid for the temperature pulsations as well, if the characteristic induction 
time for the thermal perturbations Tit is much less than the characteristic time of energy 
exchange between vorticity and temperature perturbations, that is, 

lr >>llral ~~176 (22) 
where ~0, TO are the characteristic values for the amplitudes of the vorticity and tempera- 
ture perturbations. 

In this case, we represent Eq. (ii) in analogy with (12), adding to the right hand side 
a random source of temperature perturbations q(y, t): 

aT" lr~Q; + IrT'-q-a 02T-----~' + *l(t/, t). ( 2 3 )  
at @2 
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We also assume that the properties of N(y, t) are identical to those of ~(y, t), and further- 
more assume that there is no correlation between them, that is: 

< ~ (v, t) > = o, < ~ (v, t) n (v', t ') > = %a (y '  - y) 8 ( t ' , -  t), 

< n (y, t) ~ O ' ,  t') > = < ~ (~, t) n (~', t') > = 0. 

Represen t ing  the  s o l u t i o n  to  system (12) and (23) in the  form g ' ( y ,  t )  = g ( t ) e x p ( - i k y ) ,  
we obtain 

( 2 4 )  

where 

T' + ~ (k) T' Jr co2 (k) T' = q~r (k, t), (25) 

% (k) = (a 4:- v) k z --  (I a + IT); coo (k) = [arks - -  ~I~ + vlr) +- lair] 1/~; 
(26) 

% (~, t) = ~ +  (vka - -  la) ~ + I r a ' ;  S~ (k, co) = [(vk2_Ia)2 + 0)q % + I ~ a % .  

In t h e s e  equa t i ons ,  X, m0, ~T, S~ a r e  the  decrement  and resonance  f requency  of  the  thermo- 
v o r t i c a l  i n t e r a c t i o n s ,  the  random source  and i t s  SPD, r e s p e c t i v e l y .  

I f  l a r g e - s c a l e  p e r t u r b a t i o n s  predomina te  in the  mixing l a y e r ,  whose e v o l u t i o n  is  d e t e r -  
mined s o l e l y  by the  a c t i o n  of  the  n o n l i n e a r  sou rces ,  then  the  d i s s i p a t i o n  terms in the  expres -  
s ion  fo r  coo can be n e g l e c t e d .  Then in p l ace  of  ~0 we ob t a in  a r e l a t i o n  fo r  some e f f e c t i v e  
f requency  coe, averaged over  the  s c a l e  of  the  p e r t u r b a t i o n s :  

c o o ~ c o = ( i a i T ) l / 2 = [  Auo 02uo / OQ ) ]1/2 
9oc~(duo,/@)m~ 09 z (,~T--.o] (27) 

The modulus of the transfer function for temperature fluctuations in analogy to (15) takes 
the form 

I I,,k,_,0>, / i . ]I -I IDr(k, co)l == coa @ \ - - ~ - - l ) c o  2 , e = a + v ,  l o = l a + I r .  (28) 

Using (27) and (28) in analogy to (16), we write an expression defining the SPD for 
temperature pulsations, which after integration yields: 

ST(CO)-- 8e2Lco 2ag% [ 1cr exp (-- (z-) ( c~ Cz+c~_ 

I ( aolr% ~+ 1 exp(--r162 cosec+ 
2%Lco 2 2co~ So . a 

+ {1+ ( .  
4q~ LCO 2 ~ qs 

t' --sine+co+ ) ] _ 

sincx+ ) + 

___,)+ 
, leo,.+(. 2q.) ,in.+( + T e x p ( - - ~ - )  1 1 + .  �9 , 

~ -  , qs ~ o ;+  qs 

'2. 9 co~ = [(co~/cop-- lpcoL so = (v + a)/L", qs = (co; + / ~ ) i / 2 ,  

>i ~• (q~ ' I o  - -  - Y-t_'Z_ 

g O  

Figure 4 shows the characteristic SPD form for temperature pulsations for various val- 

ues of m e and ~T ( ' I T / ~  IT  = I 2 ) .  

Once again we find the asymptotes to the SPD: 

Sr (co)--+ ai!% .co-al~ ~ co--a/',_ 
8 1/2co~s3/'2L ' , co-+O; 

Sr (co)~ a;% _~ ,, .co I -  co-51~, co-->-oo; (30) 
8 V~do/% 

sT (co) ~ (I~ T co~ ) % s 0 -  co - -  co~ 
32co 2 I~/2L I,l~l t ~ co-i, co_+ co~, ~ _ _ _  

COe 

(29) 
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Fig. 4. Representative SPD forms for the tem- 
perature perturbations, m e = 103 sec-1: i) TT= 
103 sec2/m; 2) 51103; 3) 8.103; 4) 104 . m e = 
5.103 sec-1: 5) I T = 103; 6) 5.103; 7) 8.102; 
8) 104 . S T is in units of deg2/Hz. 

As follows from (30), flicker noise (S T ~ m -I) is already observed in the neighborhood 
of m = m e , which indicates the arisal of nonequilibrium dynamic structure for m + m e . 

The appearance of a characteristic resonance frequency m e described above in the temper- 
ature pulsation spectrum was, in all probability, observed by Abugov and Obrezkov [4] in 
their experimental investigation of the spectra of open propane-air flames. They observed 
the characteristic break in the radiation fluctuation spectrum, which with increasing oxygen 
content in the fuel mixture degenerated to a "peak." 

4. Conclusions 

i) It has been shown that the arisal of flicker-noise during turbulent flow with volume 
heat release in the mixing layer is indicative of amplification of perturbations due to non- 
equilibrium and of the probable appearance of ordered structures; 2) we have established 
that in the absence of interaction between vorticity and temperature perturbations, the range 
of frequencies in which pulsation amplification occurs corresponds to n ~ -I, where n is 
the power exponent in the relation S(m) ~ mn; 3) in the presence of interaction between vor- 
ticity and temperature perturbations there is a certain isolated resonance frequency ~e, 
which grows with intensification of the interaction, and flicker-noise arises in the neighbor- 
hood of this frequency. 

NOTATION 

u is the gas velocity; p, T, p are the density, temperature, and pressure of the gas; 
D, v are the coefficients of dynamic and kinematic viscosity; ~, a are the coefficients of 
thermal conductivity and thermal diffusivity; Cp is the heat capacity at constant pressure; 
L is a characteristic dimension; h is the width of the burner outlet; �9 is the characteristic 
time; k, ~p are the wavenumber and wavelength of the perturbation; m is the frequency; 
is the vorticity; X is the attenuation of the thermo-vortical interactions; I~, I T are the 
vorticity and temperature perturbation increments; o is the power of the random perturbation 
source; $, q, ~ are the random perturbation sources; S is the spectral power density of the 
pulsations; D(k, m) is the system transfer function; 6 is the Dirac delta function. Indices: 
' and 0 correspond to pulsation and averaged values. 
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